Subgroup ($H$) information
| Description: | $C_6^2:D_6$ |
| Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(14,15,16), (15,16), (1,9,2)(3,4,7), (3,7,4)(5,8,6)(10,13)(11,12), (3,4,7)(5,6,8), (10,11)(12,13), (1,2)(3,5,7,8,4,6)(10,11,13,12)(14,15,16)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $C_3:C_6^3:S_4$ |
| Order: | \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_3\times C_6^2).A_4.C_6.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times D_6^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| $W$ | $S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $36$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $C_3:C_6^3:S_4$ |