Subgroup ($H$) information
Description: | $C_6^2.S_3^2$ |
Order: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$\langle(10,11)(12,13), (14,15,16), (1,9,2)(3,4,7)(5,8,6), (1,8,4,2,5,3,9,6,7)(10,11,12) \!\cdots\! \rangle$
|
Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_3:C_6^3:S_4$ |
Order: | \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_3\times C_6^2).A_4.C_6.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
$W$ | $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $24$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_3:C_6^3:S_4$ |