Properties

Label 15552.ip.12.ba1
Order $ 2^{4} \cdot 3^{4} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(10,11)(12,13), (14,15,16), (1,9,2)(3,4,7)(5,8,6), (1,8,4,2,5,3,9,6,7)(10,11,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3:C_6^3:S_4$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_6^2).A_4.C_6.C_2^3$
$\operatorname{Aut}(H)$ $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$W$$C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_6^2.S_3^2$
Normal closure:$C_3:C_6^3:S_4$
Core:$C_2\times D_6$
Minimal over-subgroups:$S_3\times C_3^3:S_4$
Maximal under-subgroups:$S_3\times C_3^2.A_4$$C_3^3.S_4$$C_3^3.S_4$$C_6^2.D_6$$C_6^2:D_6$$C_6^2.D_6$$C_3^2.S_3^2$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_3:C_6^3:S_4$