Properties

Label 15552.fx.8.b1
Order $ 2^{3} \cdot 3^{5} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:S_4$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $ae^{5}, de^{4}f^{2}, de^{2}f^{2}, b^{2}d^{2}e^{3}f^{4}, d^{2}e^{2}, f^{3}, e^{3}, c^{4}de^{4}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(S_3\times C_6^3):D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^6$
$\operatorname{Aut}(H)$ $C_3^4.C_6^2.S_3^3$
$W$$C_6^2.S_3^3$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(S_3\times C_6^3):D_6$
Complements:$D_4$ $D_4$ $D_4$ $D_4$ $D_4$ $D_4$ $D_4$ $D_4$ $D_4$ $D_4$ $D_4$ $D_4$ $D_4$
Minimal over-subgroups:$C_2\times C_6^2.C_3^3.C_2$$S_3\times C_3^3:S_4$$C_6^2.C_3^3.C_2^2$
Maximal under-subgroups:$C_3^4:A_4$$C_3^4:D_4$$C_3^3:S_4$$C_3^3.S_4$$C_3^3:S_4$$C_3^3:S_4$$C_3^3:S_4$$C_3^3:S_4$$C_3^4:S_3$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$(S_3\times C_6^3):D_6$