Subgroup ($H$) information
Description: | $C_3^4:S_4$ |
Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$ae^{5}, de^{4}f^{2}, de^{2}f^{2}, b^{2}d^{2}e^{3}f^{4}, d^{2}e^{2}, f^{3}, e^{3}, c^{4}de^{4}$
|
Derived length: | $3$ |
The subgroup is normal, a semidirect factor, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $(S_3\times C_6^3):D_6$ |
Order: | \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $D_4$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^2.C_3^4.C_2^6$ |
$\operatorname{Aut}(H)$ | $C_3^4.C_6^2.S_3^3$ |
$W$ | $C_6^2.S_3^3$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $2$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | not computed |
Projective image | $(S_3\times C_6^3):D_6$ |