Properties

Label 15552.fx.24.dk1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:D_4$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ac^{6}def^{2}, d^{2}e^{2}, c^{4}de^{4}, f^{3}, de^{2}f^{2}, de^{4}f^{2}, e^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $(S_3\times C_6^3):D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^6$
$\operatorname{Aut}(H)$ $C_2^3\times C_3^3:C_2.\SL(3,3)$
$W$$C_3:D_6^2$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3^4.D_4^2$
Normal closure:$C_2\times C_6^2.C_3^3.C_2$
Core:$C_3^2\times C_6^2$
Minimal over-subgroups:$C_3^4:S_4$$C_6^3:C_6$$C_6^2:S_3^2$$C_6^2:S_3^2$
Maximal under-subgroups:$C_3^2\times C_6^2$$C_3^3:D_6$$C_3^3:C_{12}$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$(S_3\times C_6^3):D_6$