Properties

Label 15552.fx.1944.E
Order $ 2^{3} $
Index $ 2^{3} \cdot 3^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $b^{3}de^{2}f^{2}, c^{3}e^{3}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $(S_3\times C_6^3):D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^6$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer: not computed
Normalizer:$D_4\times S_4$
Normal closure:$C_3^3:D_{12}$
Core:$C_2$
Minimal over-subgroups:$C_2\times D_4$

Other information

Number of subgroups in this autjugacy class$81$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^2.S_3^3$