Properties

Label 1536.10766179.8.r1.a1
Order $ 2^{6} \cdot 3 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:\OD_{32}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $a, d^{24}, d^{12}, b^{4}d^{36}, d^{16}, c, d^{30}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{16}).D_{24}$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^2.C_2^6.C_2^6)$
$\operatorname{Aut}(H)$ $(C_2^3\times C_{12}):C_2^4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$C_{12}.(C_8\times Q_8)$
Normal closure:$C_2\times C_{24}.C_8$
Core:$C_2^2\times C_{24}$
Minimal over-subgroups:$C_2\times C_{24}.C_8$$(C_2\times C_{16}).D_6$$(C_2\times C_{48}):C_4$
Maximal under-subgroups:$C_2^2\times C_{24}$$C_6:C_{16}$$C_3:\OD_{32}$$C_3:\OD_{32}$$C_2\times \OD_{32}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed