Subgroup ($H$) information
Description: | $(C_2\times C_{16}).D_6$ |
Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Generators: |
$a, d^{30}, d^{12}, b^{4}d^{36}, c, d^{16}, d^{24}, d^{3}$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $(C_2\times C_{16}).D_{24}$ |
Order: | \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:(C_2^2.C_2^6.C_2^6)$ |
$\operatorname{Aut}(H)$ | $C_3:(C_2^5.C_2^6)$ |
$\card{W}$ | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | not computed |
Projective image | not computed |