Properties

Label 1536.10766179.24.n1.a1
Order $ 2^{6} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times \OD_{32}$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $a, b^{4}d^{36}, c$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{16}).D_{24}$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^2.C_2^6.C_2^6)$
$\operatorname{Aut}(H)$ $C_2^3.C_2^5$, of order \(256\)\(\medspace = 2^{8} \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$C_4.(C_8\times Q_8)$
Normal closure:$C_2\times C_{24}.C_8$
Core:$C_2^2\times C_8$
Minimal over-subgroups:$C_6:\OD_{32}$$C_2^3.\OD_{16}$$C_8.(C_2\times D_4)$$\OD_{32}:C_4$
Maximal under-subgroups:$C_2^2\times C_8$$C_2\times C_{16}$$\OD_{32}$$\OD_{32}$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function not computed
Projective image not computed