Properties

Label 1512.780.27.a1.a1
Order $ 2^{3} \cdot 7 $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$F_8$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\left(\begin{array}{ll}\alpha^{23} & \alpha^{50} \\ \alpha^{35} & \alpha^{23} \\ \end{array}\right), \left(\begin{array}{ll}\alpha^{41} & \alpha^{20} \\ \alpha^{61} & \alpha^{13} \\ \end{array}\right), \left(\begin{array}{ll}\alpha^{44} & \alpha^{5} \\ \alpha^{53} & \alpha^{44} \\ \end{array}\right), \left(\begin{array}{ll}\alpha & \alpha^{32} \\ \alpha^{17} & \alpha \\ \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3\times \SL(2,8)$
Order: \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian, an A-group, and nonsolvable.

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 27T390.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8):C_6$, of order \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$F_8$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3\times F_8$
Normal closure:$\SL(2,8)$
Core:$C_1$
Minimal over-subgroups:$\SL(2,8)$$C_3\times F_8$
Maximal under-subgroups:$C_2^3$$C_7$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$1$
Projective image$C_3\times \SL(2,8)$