Properties

Label 1512.780.504.a1.a1
Order $ 3 $
Index $ 2^{3} \cdot 3^{2} \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
Exponent: \(3\)
Generators: $\left(\begin{array}{ll}\alpha^{21} & 0 \\ 0 & \alpha^{21} \\ \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Fitting subgroup, the radical, a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_3\times \SL(2,8)$
Order: \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian, an A-group, and nonsolvable.

Quotient group ($Q$) structure

Description: $\SL(2,8)$
Order: \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Automorphism Group: ${}^2G(2,3)$, of order \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
Outer Automorphisms: $C_3$, of order \(3\)
Nilpotency class: $-1$
Derived length: $0$

The quotient is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8):C_6$, of order \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times \SL(2,8)$
Normalizer:$C_3\times \SL(2,8)$
Complements:$\SL(2,8)$
Minimal over-subgroups:$C_{21}$$C_3^2$$C_6$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-504$
Projective image$\SL(2,8)$