Properties

Label 1498.1.7.a1.a1
Order $ 2 \cdot 107 $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{214}$
Order: \(214\)\(\medspace = 2 \cdot 107 \)
Index: \(7\)
Exponent: \(214\)\(\medspace = 2 \cdot 107 \)
Generators: $a, b^{7}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is maximal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,107$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $D_7\times C_{107}$
Order: \(1498\)\(\medspace = 2 \cdot 7 \cdot 107 \)
Exponent: \(1498\)\(\medspace = 2 \cdot 7 \cdot 107 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{106}\times F_7$
$\operatorname{Aut}(H)$ $C_{106}$, of order \(106\)\(\medspace = 2 \cdot 53 \)
$\operatorname{res}(S)$$C_{106}$, of order \(106\)\(\medspace = 2 \cdot 53 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{214}$
Normalizer:$C_{214}$
Normal closure:$D_7\times C_{107}$
Core:$C_{107}$
Minimal over-subgroups:$D_7\times C_{107}$
Maximal under-subgroups:$C_{107}$$C_2$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-1$
Projective image$D_7$