Properties

Label 1498.1.14.a1.a1
Order $ 107 $
Index $ 2 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{107}$
Order: \(107\)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(107\)
Generators: $b^{7}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $107$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $D_7\times C_{107}$
Order: \(1498\)\(\medspace = 2 \cdot 7 \cdot 107 \)
Exponent: \(1498\)\(\medspace = 2 \cdot 7 \cdot 107 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $D_7$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_3$, of order \(3\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{106}\times F_7$
$\operatorname{Aut}(H)$ $C_{106}$, of order \(106\)\(\medspace = 2 \cdot 53 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{106}$, of order \(106\)\(\medspace = 2 \cdot 53 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_7\times C_{107}$
Normalizer:$D_7\times C_{107}$
Complements:$D_7$
Minimal over-subgroups:$C_{749}$$C_{214}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$7$
Projective image$D_7$