Subgroup ($H$) information
Description: | $D_{16}$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Index: | \(465\)\(\medspace = 3 \cdot 5 \cdot 31 \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Generators: |
$\left[ \left(\begin{array}{rr}
27 & 7 \\
2 & 4
\end{array}\right) \right], \left[ \left(\begin{array}{rr}
28 & 22 \\
8 & 3
\end{array}\right) \right], \left[ \left(\begin{array}{rr}
0 & 22 \\
7 & 0
\end{array}\right) \right], \left[ \left(\begin{array}{rr}
11 & 28 \\
8 & 12
\end{array}\right) \right], \left[ \left(\begin{array}{rr}
21 & 18 \\
14 & 15
\end{array}\right) \right]$
|
Nilpotency class: | $4$ |
Derived length: | $2$ |
The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
Description: | $\PSL(2,31)$ |
Order: | \(14880\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 31 \) |
Exponent: | \(7440\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 31 \) |
Derived length: | $0$ |
The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\PGL(2,31)$, of order \(29760\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 31 \) |
$\operatorname{Aut}(H)$ | $D_{16}:C_4$, of order \(128\)\(\medspace = 2^{7} \) |
$W$ | $D_8$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Centralizer: | $C_2$ | ||
Normalizer: | $D_{16}$ | ||
Normal closure: | $\PSL(2,31)$ | ||
Core: | $C_1$ | ||
Minimal over-subgroups: | $\PSL(2,31)$ | ||
Maximal under-subgroups: | $C_{16}$ | $D_8$ | $D_8$ |
Other information
Number of subgroups in this conjugacy class | $465$ |
Möbius function | $-1$ |
Projective image | $\PSL(2,31)$ |