Properties

Label 14880.a.930.b1.a1
Order $ 2^{4} $
Index $ 2 \cdot 3 \cdot 5 \cdot 31 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_8$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 31 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left[ \left(\begin{array}{rr} 27 & 7 \\ 2 & 4 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 28 & 22 \\ 8 & 3 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 11 & 28 \\ 8 & 12 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 21 & 18 \\ 14 & 15 \end{array}\right) \right]$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $\PSL(2,31)$
Order: \(14880\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 31 \)
Exponent: \(7440\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 31 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGL(2,31)$, of order \(29760\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 31 \)
$\operatorname{Aut}(H)$ $D_8:C_2$, of order \(32\)\(\medspace = 2^{5} \)
$W$$D_8$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{16}$
Normal closure:$\PSL(2,31)$
Core:$C_1$
Minimal over-subgroups:$D_{16}$
Maximal under-subgroups:$C_8$$D_4$
Autjugate subgroups:14880.a.930.b1.a2

Other information

Number of subgroups in this conjugacy class$465$
Möbius function$0$
Projective image$\PSL(2,31)$