Properties

Label 148224.c.4.d1.b1
Order $ 2^{6} \cdot 3 \cdot 193 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$F_{193}$
Order: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Generators: $a^{24}b^{208}, b^{4}, a^{96}b^{720}, a^{48}b^{536}, a^{12}b^{668}, a^{3}b^{2}, a^{64}, a^{6}b^{212}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_4\times F_{193}$
Order: \(148224\)\(\medspace = 2^{8} \cdot 3 \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{386}.C_{96}.C_2^3$
$\operatorname{Aut}(H)$ $F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
$W$$F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_4\times F_{193}$
Complements:$C_4$ $C_4$ $C_4$ $C_4$
Minimal over-subgroups:$C_2\times F_{193}$
Maximal under-subgroups:$C_{193}:C_{96}$$C_{193}:C_{64}$$C_{192}$
Autjugate subgroups:148224.c.4.d1.a1148224.c.4.d1.c1148224.c.4.d1.d1

Other information

Möbius function$0$
Projective image$C_4\times F_{193}$