Subgroup ($H$) information
Description: | $C_2\times F_{193}$ |
Order: | \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \) |
Index: | \(2\) |
Exponent: | \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \) |
Generators: |
$b^{4}, a^{6}, b^{386}, a^{3}, a^{64}, a^{96}, a^{12}, a^{24}, a^{48}$
|
Derived length: | $2$ |
The subgroup is normal, maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
Description: | $C_4\times F_{193}$ |
Order: | \(148224\)\(\medspace = 2^{8} \cdot 3 \cdot 193 \) |
Exponent: | \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{386}.C_{96}.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_2\times F_{193}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \) |
$W$ | $F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $C_2\times F_{193}$ |