Properties

Label 148224.c.2.b1.a1
Order $ 2^{7} \cdot 3 \cdot 193 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times F_{193}$
Order: \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
Index: \(2\)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Generators: $b^{4}, a^{6}, b^{386}, a^{3}, a^{64}, a^{96}, a^{12}, a^{24}, a^{48}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_4\times F_{193}$
Order: \(148224\)\(\medspace = 2^{8} \cdot 3 \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{386}.C_{96}.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times F_{193}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
$W$$F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_4\times F_{193}$
Minimal over-subgroups:$C_4\times F_{193}$
Maximal under-subgroups:$C_{386}:C_{96}$$F_{193}$$F_{193}$$C_{386}:C_{64}$$C_2\times C_{192}$
Autjugate subgroups:148224.c.2.b1.b1

Other information

Möbius function$-1$
Projective image$C_2\times F_{193}$