Properties

Label 148224.a.4.c1
Order $ 2^{6} \cdot 3 \cdot 193 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1544}.C_{24}$
Order: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \)
Generators: $b^{772}, b^{16}, b^{1544}, a^{24}b^{1204}, a^{12}b^{1634}, a^{6}b^{1553}, b^{386}, a^{16}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{3088}:C_{48}$
Order: \(148224\)\(\medspace = 2^{8} \cdot 3 \cdot 193 \)
Exponent: \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1544}.C_{96}.C_2.C_2^4$
$\operatorname{Aut}(H)$ $C_{772}.C_{96}.C_2^4$
$W$$C_{193}:C_{48}$, of order \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_{16}$
Normalizer:$C_{3088}:C_{48}$
Minimal over-subgroups:$C_{3088}:C_{24}$
Maximal under-subgroups:$C_{1544}:C_{12}$$D_{193}:C_{48}$$C_{1544}.C_8$$C_4\times C_{48}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{386}:C_{48}$