Properties

Label 148224.a.8.e1
Order $ 2^{5} \cdot 3 \cdot 193 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{193}:C_{48}$
Order: \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \)
Generators: $a^{12}b^{1654}, a^{24}b^{2844}, b^{1544}, a^{16}, b^{772}, a^{6}b^{1555}, b^{16}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{3088}:C_{48}$
Order: \(148224\)\(\medspace = 2^{8} \cdot 3 \cdot 193 \)
Exponent: \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1544}.C_{96}.C_2.C_2^4$
$\operatorname{Aut}(H)$ $C_{386}.C_{96}.C_2^3$
$W$$C_{193}:C_{48}$, of order \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_{16}$
Normalizer:$C_{3088}:C_{48}$
Minimal over-subgroups:$C_{1544}.C_{24}$
Maximal under-subgroups:$D_{193}:C_{24}$$C_{193}:C_{48}$$D_{193}:C_{16}$$C_2\times C_{48}$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_{772}:C_{48}$