Subgroup ($H$) information
Description: | $C_{3088}:C_{24}$ |
Order: | \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \) |
Index: | \(2\) |
Exponent: | \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \) |
Generators: |
$b^{16}, a^{12}, b^{193}, a^{6}, a^{16}, b^{1544}, b^{386}, a^{24}, b^{772}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
Description: | $C_{3088}:C_{48}$ |
Order: | \(148224\)\(\medspace = 2^{8} \cdot 3 \cdot 193 \) |
Exponent: | \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{1544}.C_{96}.C_2.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_6\times S_6$, of order \(2371584\)\(\medspace = 2^{12} \cdot 3 \cdot 193 \) |
$W$ | $C_{193}:C_{48}$, of order \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \) |
Related subgroups
Centralizer: | $C_{16}$ | ||||
Normalizer: | $C_{3088}:C_{48}$ | ||||
Minimal over-subgroups: | $C_{3088}:C_{48}$ | ||||
Maximal under-subgroups: | $C_{1544}:C_{24}$ | $C_{3088}:C_{12}$ | $C_{1544}.C_{24}$ | $C_{3088}:C_8$ | $C_8\times C_{48}$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $C_{193}:C_{48}$ |