Properties

Label 148224.a.6.a1
Order $ 2^{7} \cdot 193 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{3088}:C_8$
Order: \(24704\)\(\medspace = 2^{7} \cdot 193 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Generators: $a^{24}, b^{16}, b^{1544}, b^{772}, b^{386}, a^{6}, b^{193}, a^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{3088}:C_{48}$
Order: \(148224\)\(\medspace = 2^{8} \cdot 3 \cdot 193 \)
Exponent: \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1544}.C_{96}.C_2.C_2^4$
$\operatorname{Aut}(H)$ $C_{579}:C_{48}$, of order \(2371584\)\(\medspace = 2^{12} \cdot 3 \cdot 193 \)
$W$$C_{193}:C_{48}$, of order \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_{16}$
Normalizer:$C_{3088}:C_{48}$
Minimal over-subgroups:$C_{3088}:C_{24}$$C_{3088}:C_{16}$
Maximal under-subgroups:$C_{1544}:C_8$$C_{3088}:C_4$$C_{1544}.C_8$$C_8\times C_{16}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_{193}:C_{48}$