Properties

Label 1480.20.1.a1.a1
Order $ 2^{3} \cdot 5 \cdot 37 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_{148}$
Order: \(1480\)\(\medspace = 2^{3} \cdot 5 \cdot 37 \)
Index: $1$
Exponent: \(740\)\(\medspace = 2^{2} \cdot 5 \cdot 37 \)
Generators: $b^{370}, b^{20}, b^{444}, b^{185}, a$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, metacyclic (hence supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_5\times D_{148}$
Order: \(1480\)\(\medspace = 2^{3} \cdot 5 \cdot 37 \)
Exponent: \(740\)\(\medspace = 2^{2} \cdot 5 \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{74}.C_{18}.C_2.C_2^4$
$\operatorname{Aut}(H)$ $C_{74}.C_{18}.C_2.C_2^4$
$W$$D_{74}$, of order \(148\)\(\medspace = 2^{2} \cdot 37 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_5\times D_{148}$
Complements:$C_1$
Maximal under-subgroups:$C_5\times D_{74}$$C_5\times D_{74}$$C_{740}$$D_{148}$$C_5\times D_4$

Other information

Möbius function$1$
Projective image$D_{74}$