Properties

Label 1480.20.148.a1.a1
Order $ 2 \cdot 5 $
Index $ 2^{2} \cdot 37 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(148\)\(\medspace = 2^{2} \cdot 37 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $b^{370}, b^{444}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and cyclic (hence elementary ($p = 2,5$), hyperelementary, metacyclic, and a Z-group).

Ambient group ($G$) information

Description: $C_5\times D_{148}$
Order: \(1480\)\(\medspace = 2^{3} \cdot 5 \cdot 37 \)
Exponent: \(740\)\(\medspace = 2^{2} \cdot 5 \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $D_{74}$
Order: \(148\)\(\medspace = 2^{2} \cdot 37 \)
Exponent: \(74\)\(\medspace = 2 \cdot 37 \)
Automorphism Group: $C_2\times F_{37}$, of order \(2664\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 37 \)
Outer Automorphisms: $C_2\times C_{18}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{74}.C_{18}.C_2.C_2^4$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10656\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 37 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_5\times D_{148}$
Normalizer:$C_5\times D_{148}$
Minimal over-subgroups:$C_{370}$$C_{20}$$C_2\times C_{10}$$C_2\times C_{10}$
Maximal under-subgroups:$C_5$$C_2$

Other information

Möbius function$-74$
Projective image$D_{74}$