Properties

Label 1458.306.9.l1
Order $ 2 \cdot 3^{4} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times C_{18}$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $e^{9}, e^{6}, a, e^{2}, d$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 3$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_2\times C_3^3.C_3^3$
Order: \(1458\)\(\medspace = 2 \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3.C_3^5.C_6^2$
$\operatorname{Aut}(H)$ $C_6.C_3^4:\GL(2,3)$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{res}(S)$$C_3\wr C_2^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(27\)\(\medspace = 3^{3} \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_3^2\times C_{18}$
Normalizer:$C_{18}.C_3^3$
Normal closure:$C_{18}.C_3^3$
Core:$C_3\times C_{18}$
Minimal over-subgroups:$C_{18}.C_3^3$
Maximal under-subgroups:$C_3^2\times C_9$$C_3\times C_{18}$$C_3^2\times C_6$$C_3\times C_{18}$$C_3\times C_{18}$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3\times \He_3$