Properties

Label 1458.306.3.e1
Order $ 2 \cdot 3^{5} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{18}.C_3^3$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: \(3\)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $e^{9}, e^{6}, d, a, e^{2}, be^{6}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2\times C_3^3.C_3^3$
Order: \(1458\)\(\medspace = 2 \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3.C_3^5.C_6^2$
$\operatorname{Aut}(H)$ $C_3^6:(S_3\times \GL(2,3))$, of order \(209952\)\(\medspace = 2^{5} \cdot 3^{8} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_3^5:D_6$, of order \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$\He_3$, of order \(27\)\(\medspace = 3^{3} \)

Related subgroups

Centralizer:$C_3\times C_{18}$
Normalizer:$C_2\times C_3^3.C_3^3$
Complements:$C_3$ $C_3$
Minimal over-subgroups:$C_2\times C_3^3.C_3^3$
Maximal under-subgroups:$C_9.C_3^3$$C_6\times \He_3$$C_3^2\times C_{18}$$C_{18}:C_3^2$$C_3^2\times C_{18}$$C_{18}:C_3^2$$C_6.C_3^3$$C_6.C_3^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_3\times \He_3$