Subgroup ($H$) information
| Description: | $C_{18}.C_3^3$ | 
| Order: | \(486\)\(\medspace = 2 \cdot 3^{5} \) | 
| Index: | \(3\) | 
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Generators: | $e^{9}, e^{6}, d, a, e^{2}, be^{6}$ | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_2\times C_3^3.C_3^3$ | 
| Order: | \(1458\)\(\medspace = 2 \cdot 3^{6} \) | 
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Nilpotency class: | $3$ | 
| Derived length: | $2$ | 
The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_3$ | 
| Order: | \(3\) | 
| Exponent: | \(3\) | 
| Automorphism Group: | $C_2$, of order \(2\) | 
| Outer Automorphisms: | $C_2$, of order \(2\) | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3.C_3^5.C_6^2$ | 
| $\operatorname{Aut}(H)$ | $C_3^6:(S_3\times \GL(2,3))$, of order \(209952\)\(\medspace = 2^{5} \cdot 3^{8} \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_3^5:D_6$, of order \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(9\)\(\medspace = 3^{2} \) | 
| $W$ | $\He_3$, of order \(27\)\(\medspace = 3^{3} \) | 
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $-1$ | 
| Projective image | $C_3\times \He_3$ | 
