Subgroup ($H$) information
| Description: | $C_{18}:C_3^2$ |
| Order: | \(162\)\(\medspace = 2 \cdot 3^{4} \) |
| Index: | \(9\)\(\medspace = 3^{2} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Generators: |
$e^{9}, e^{6}, ab^{2}e^{12}, be^{8}, d$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_2\times C_3^3.C_3^3$ |
| Order: | \(1458\)\(\medspace = 2 \cdot 3^{6} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Nilpotency class: | $3$ |
| Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3.C_3^5.C_6^2$ |
| $\operatorname{Aut}(H)$ | $C_3^4:S_3^2$, of order \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \) |
| $\operatorname{res}(S)$ | $C_3^2\wr C_2$, of order \(162\)\(\medspace = 2 \cdot 3^{4} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(27\)\(\medspace = 3^{3} \) |
| $W$ | $C_3^2$, of order \(9\)\(\medspace = 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $6$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $0$ |
| Projective image | $C_3\times \He_3$ |