Subgroup ($H$) information
Description: | $S_3\times C_3^3$ |
Order: | \(162\)\(\medspace = 2 \cdot 3^{4} \) |
Index: | \(9\)\(\medspace = 3^{2} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$c^{9}, d, a, bc^{6}, c^{6}$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_3^5:C_6$ |
Order: | \(1458\)\(\medspace = 2 \cdot 3^{6} \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^4.S_3^3$, of order \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \) |
$\operatorname{Aut}(H)$ | $S_3\times \GL(3,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \) |
$\operatorname{res}(S)$ | $C_6\times S_3^2$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(9\)\(\medspace = 3^{2} \) |
$W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $9$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_3^4:C_6$ |