Properties

Label 1458.1107.3.a1
Order $ 2 \cdot 3^{5} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:C_6$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: \(3\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $c^{9}, e, d, a, bc^{6}, c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^5:C_6$
Order: \(1458\)\(\medspace = 2 \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.S_3^3$, of order \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $C_2\times \SL(3,3)\times \AGL(2,3)$
$\operatorname{res}(\operatorname{Aut}(G))$$C_6\times C_3^2:S_3^2$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$C_3^2:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3^3$
Normalizer:$C_3^5:C_6$
Complements:$C_3$ $C_3$
Minimal over-subgroups:$C_3^5:C_6$
Maximal under-subgroups:$C_3^5$$C_3^2\wr C_2$$S_3\times C_3^3$$S_3\times C_3^3$$C_3^2\wr C_2$$C_3^2\wr C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_3^4:C_6$