Properties

Label 1458.1107.6.a1
Order $ 3^{5} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^5$
Order: \(243\)\(\medspace = 3^{5} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(3\)
Generators: $a, e, bc^{6}, c^{6}, d$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_3^5:C_6$
Order: \(1458\)\(\medspace = 2 \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.S_3^3$, of order \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $\GL(5,3)$, of order \(475566474240\)\(\medspace = 2^{10} \cdot 3^{10} \cdot 5 \cdot 11^{2} \cdot 13 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6^2:C_6$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(81\)\(\medspace = 3^{4} \)
$W$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_3^5$
Normalizer:$C_3^5:C_6$
Complements:$C_6$
Minimal over-subgroups:$C_3^5:C_3$$C_3^4:C_6$
Maximal under-subgroups:$C_3^4$$C_3^4$$C_3^4$$C_3^4$$C_3^4$$C_3^4$$C_3^4$$C_3^4$$C_3^4$$C_3^4$$C_3^4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_3^4:C_6$