Subgroup ($H$) information
Description: | $C_3^5$ |
Order: | \(243\)\(\medspace = 3^{5} \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(3\) |
Generators: |
$a, e, bc^{6}, c^{6}, d$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
Description: | $C_3^5:C_6$ |
Order: | \(1458\)\(\medspace = 2 \cdot 3^{6} \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^4.S_3^3$, of order \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \) |
$\operatorname{Aut}(H)$ | $\GL(5,3)$, of order \(475566474240\)\(\medspace = 2^{10} \cdot 3^{10} \cdot 5 \cdot 11^{2} \cdot 13 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_6^2:C_6$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(81\)\(\medspace = 3^{4} \) |
$W$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $1$ |
Projective image | $C_3^4:C_6$ |