Subgroup ($H$) information
Description: | $C_6^2.D_4$ |
Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Index: | \(5\) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$a, c^{2}d^{20}, d^{15}, b, d^{20}, c^{3}, b^{2}$
|
Derived length: | $3$ |
The subgroup is maximal, nonabelian, a Hall subgroup, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $D_{10}.\SOPlus(4,2)$ |
Order: | \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(D_5\times C_3:S_3).C_2^6$ |
$\operatorname{Aut}(H)$ | $D_6^2:D_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
$\operatorname{res}(S)$ | $D_6^2:C_2^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $5$ |
Möbius function | $-1$ |
Projective image | $S_3^2:D_{10}$ |