Properties

Label 1440.4793.10.b1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6.D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, d^{20}, c^{2}d^{20}, c^{3}, b^{2}, d^{15}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $D_{10}.\SOPlus(4,2)$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(D_5\times C_3:S_3).C_2^6$
$\operatorname{Aut}(H)$ $D_6^2:C_2^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_6^2:D_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^2.D_4$
Normal closure:$D_{10}.S_3^2$
Core:$D_6:S_3$
Minimal over-subgroups:$D_{10}.S_3^2$$C_6^2.D_4$
Maximal under-subgroups:$D_6:S_3$$C_6\wr C_2$$C_6.D_6$$C_6.D_6$$C_3^2:Q_8$$D_4:S_3$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$1$
Projective image$S_3^2:D_{10}$