Properties

Label 1440.4793.20.d1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\wr C_2$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{2}d^{20}, c^{3}, d^{20}, d^{15}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $D_{10}.\SOPlus(4,2)$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(D_5\times C_3:S_3).C_2^6$
$\operatorname{Aut}(H)$ $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$D_6.D_6$
Normal closure:$D_{10}.S_3^2$
Core:$C_3\times C_6$
Minimal over-subgroups:$C_{30}.D_6$$D_6.D_6$
Maximal under-subgroups:$C_6^2$$C_6\times S_3$$C_3:C_{12}$$C_3\times D_4$$C_3:D_4$

Other information

Number of subgroups in this conjugacy class$10$
Möbius function$0$
Projective image$S_3^2:D_{10}$