Subgroup ($H$) information
Description: | $D_{13}$ |
Order: | \(26\)\(\medspace = 2 \cdot 13 \) |
Index: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
Exponent: | \(26\)\(\medspace = 2 \cdot 13 \) |
Generators: |
$ab, d^{3}$
|
Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $\He_3:D_{26}$ |
Order: | \(1404\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 13 \) |
Exponent: | \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \) |
Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_{13}\times C_3^2:\GL(2,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \) |
$\operatorname{Aut}(H)$ | $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
$\operatorname{res}(S)$ | $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$W$ | $D_{13}$, of order \(26\)\(\medspace = 2 \cdot 13 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $9$ |
Möbius function | $0$ |
Projective image | $\He_3:D_{26}$ |