Subgroup ($H$) information
Description: | $C_{13}$ |
Order: | \(13\) |
Index: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Exponent: | \(13\) |
Generators: |
$d^{3}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $13$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.
Ambient group ($G$) information
Description: | $\He_3:D_{26}$ |
Order: | \(1404\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 13 \) |
Exponent: | \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \) |
Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
Description: | $C_3^2:D_6$ |
Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
Outer Automorphisms: | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_{13}\times C_3^2:\GL(2,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \) |
$\operatorname{Aut}(H)$ | $C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(5616\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 13 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $\He_3:C_{26}$ | |||||||
Normalizer: | $\He_3:D_{26}$ | |||||||
Complements: | $C_3^2:D_6$ | |||||||
Minimal over-subgroups: | $C_{39}$ | $C_{39}$ | $C_{39}$ | $C_{39}$ | $C_{39}$ | $D_{13}$ | $C_{26}$ | $D_{13}$ |
Maximal under-subgroups: | $C_1$ |
Other information
Möbius function | $0$ |
Projective image | $\He_3:D_{26}$ |