Properties

Label 1404.117.108.a1.a1
Order $ 13 $
Index $ 2^{2} \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{13}$
Order: \(13\)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(13\)
Generators: $d^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $13$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $\He_3:D_{26}$
Order: \(1404\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3^2:D_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Outer Automorphisms: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{13}\times C_3^2:\GL(2,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \)
$\operatorname{Aut}(H)$ $C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(5616\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 13 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$\He_3:C_{26}$
Normalizer:$\He_3:D_{26}$
Complements:$C_3^2:D_6$
Minimal over-subgroups:$C_{39}$$C_{39}$$C_{39}$$C_{39}$$C_{39}$$D_{13}$$C_{26}$$D_{13}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$\He_3:D_{26}$