Properties

Label 1404.117.18.f1.a1
Order $ 2 \cdot 3 \cdot 13 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{39}$
Order: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Generators: $ab, d^{3}, cd^{26}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $\He_3:D_{26}$
Order: \(1404\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{13}\times C_3^2:\GL(2,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \)
$\operatorname{Aut}(H)$ $S_3\times F_{13}$, of order \(936\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 13 \)
$\operatorname{res}(S)$$S_3\times F_{13}$, of order \(936\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 13 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$S_3\times D_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{39}:D_6$
Normal closure:$C_3^2:D_{39}$
Core:$C_{13}$
Minimal over-subgroups:$C_3\times D_{39}$$S_3\times D_{13}$
Maximal under-subgroups:$C_{39}$$D_{13}$$S_3$
Autjugate subgroups:1404.117.18.f1.b11404.117.18.f1.c11404.117.18.f1.d1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$\He_3:D_{26}$