Properties

Label 1344.9757.24.x1.a1
Order $ 2^{3} \cdot 7 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{56}$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $c, c^{2}, d^{42}, d^{12}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^2$
$\operatorname{Aut}(H)$ $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{56}$
Normalizer:$Q_{16}.D_{14}$
Normal closure:$C_3:C_{56}$
Core:$C_{28}$
Minimal over-subgroups:$C_3:C_{56}$$C_7\times \OD_{16}$$C_7\times \SD_{16}$$C_8\times D_7$$C_{56}:C_2$$C_{56}:C_2$$C_7\times Q_{16}$$C_7:Q_{16}$
Maximal under-subgroups:$C_{28}$$C_8$
Autjugate subgroups:1344.9757.24.x1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed