Properties

Label 1344.9757.12.s1.a1
Order $ 2^{4} \cdot 7 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8\times D_7$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $a, c^{2}, d^{42}, c, d^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^2$
$\operatorname{Aut}(H)$ $C_2^3\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$\card{W}$\(56\)\(\medspace = 2^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_8$
Normalizer:$Q_{16}.D_{14}$
Normal closure:$C_{12}.D_{14}$
Core:$C_4\times D_7$
Minimal over-subgroups:$C_{12}.D_{14}$$C_8.D_{14}$$C_8.D_{14}$$D_7\times Q_{16}$
Maximal under-subgroups:$C_4\times D_7$$C_{56}$$C_7:C_8$$C_2\times C_8$
Autjugate subgroups:1344.9757.12.s1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed