Properties

Label 1344.9508.7.a1.a1
Order $ 2^{6} \cdot 3 $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.C_2^4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(7\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, d^{42}, c^{2}, b, d^{28}, c, d^{21}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^2$
$\operatorname{Aut}(H)$ $C_2^4:D_6^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\operatorname{res}(S)$$D_6\times D_4^2$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2^3:D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{12}.C_2^4$
Normal closure:$C_{84}.C_2^4$
Core:$D_{12}:C_2^2$
Minimal over-subgroups:$C_{84}.C_2^4$
Maximal under-subgroups:$D_{12}:C_2^2$$C_6.C_2^4$$C_6:\SD_{16}$$D_4.D_6$$C_{12}.D_4$$C_{12}.C_2^3$$C_{12}.D_4$$D_{12}:C_2^2$$D_{12}:C_2^2$$C_{12}.D_4$$C_{12}.D_4$$C_6:\SD_{16}$$C_6:\SD_{16}$$C_{12}.D_4$$C_{12}.D_4$$D_8:C_2^2$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-1$
Projective image$D_{42}:C_2^3$