Properties

Label 1344.9508.14.h1.b1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{12}:C_2^2$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $ad^{21}, d^{28}, d^{42}, bd^{45}, c, c^{2}d^{42}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^2$
$\operatorname{Aut}(H)$ $S_3\times D_4^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_2^3:D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{12}.C_2^4$
Normal closure:$D_{12}:D_{14}$
Core:$C_3:D_8$
Minimal over-subgroups:$D_{12}:D_{14}$$C_{12}.C_2^4$
Maximal under-subgroups:$C_3:D_8$$C_6\times D_4$$C_3:\SD_{16}$$D_{12}:C_2$$C_3:D_8$$C_3:\OD_{16}$$C_3:\SD_{16}$$D_8:C_2$
Autjugate subgroups:1344.9508.14.h1.a1

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$1$
Projective image$D_{42}:C_2^3$