Properties

Label 1344.9508.56.w1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2^{3} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ab, c^{2}, d^{28}, d^{42}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^2$
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(S)$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_3\times D_4$
Normalizer:$C_{12}.C_2^4$
Normal closure:$C_3\times D_{28}$
Core:$C_{12}$
Minimal over-subgroups:$C_3\times D_{28}$$D_4:C_6$$C_6\times D_4$$C_6\times D_4$$C_3:D_8$$C_3:\SD_{16}$$C_3:\SD_{16}$$C_3:\SD_{16}$
Maximal under-subgroups:$C_{12}$$C_2\times C_6$$D_4$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$8$
Projective image$D_{42}:C_2^3$