-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '1344.9508', 'ambient_counter': 9508, 'ambient_order': 1344, 'ambient_tex': 'C_{84}.C_2^4', 'central': False, 'central_factor': False, 'centralizer_order': 24, 'characteristic': False, 'core_order': 12, 'counter': 357, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '1344.9508.56.w1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': None, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '56.w1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 56, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '24.10', 'subgroup_hash': 10, 'subgroup_order': 24, 'subgroup_tex': 'C_3\\times D_4', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1344.9508', 'aut_centralizer_order': 288, 'aut_label': '56.w1', 'aut_quo_index': None, 'aut_stab_index': 7, 'aut_weyl_group': '16.11', 'aut_weyl_index': 2016, 'centralizer': '56.u1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['8.g1.a1', '28.i1.a1', '28.l1.a1', '28.l1.b1', '28.u1.a1', '28.z1.a1', '28.ba1.a1', '28.ba1.b1'], 'contains': ['112.b1.a1', '112.g1.a1', '168.u1.a1'], 'core': '112.b1.a1', 'coset_action_label': None, 'count': 7, 'diagramx': [5538, -1, 4896, -1, 5581, -1, 7189, -1], 'generators': [3, 8, 448, 672], 'label': '1344.9508.56.w1.a1', 'mobius_quo': None, 'mobius_sub': 8, 'normal_closure': '8.g1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '7.a1.a1', 'old_label': '56.w1.a1', 'projective_image': '672.1175', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '56.w1.a1', 'subgroup_fusion': None, 'weyl_group': '8.3'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '12.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 4, 'aut_gen_orders': [2, 2, 2, 2], 'aut_gens': [[1, 2], [7, 14], [13, 22], [1, 10], [13, 2]], 'aut_group': '16.11', 'aut_hash': 11, 'aut_nilpotency_class': 2, 'aut_nilpotent': True, 'aut_order': 16, 'aut_permdeg': 6, 'aut_perms': [24, 126, 1, 414], 'aut_phi_ratio': 2.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 2, 1], [3, 1, 2, 1], [4, 2, 1, 1], [6, 1, 2, 1], [6, 2, 4, 1], [12, 2, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2\\times D_4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '8.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 2, 'autcentquo_group': '2.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 2, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 2], [3, 1, 2], [4, 2, 1], [6, 1, 2], [6, 2, 4], [12, 2, 2]], 'center_label': '6.2', 'center_order': 6, 'central_product': True, 'central_quotient': '4.2', 'commutator_count': 1, 'commutator_label': '2.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '3.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 10, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['3.1', 1], ['8.3', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 2], [3, 1, 2, 1], [4, 2, 1, 1], [6, 1, 2, 1], [6, 2, 2, 2], [12, 2, 2, 1]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 12, 'exponent': 12, 'exponents_of_order': [3, 1], 'factors_of_aut_order': [2], 'factors_of_order': [2, 3], 'faithful_reps': [[2, 0, 2]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '12.5', 'hash': 10, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': False, 'inner_exponent': 2, 'inner_gen_orders': [2, 2], 'inner_gens': [[1, 14], [13, 2]], 'inner_hash': 2, 'inner_nilpotent': True, 'inner_order': 4, 'inner_split': True, 'inner_tex': 'C_2^2', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 4, 'irrQ_dim': 4, 'irrR_degree': 4, 'irrep_stats': [[1, 12], [2, 3]], 'label': '24.10', 'linC_count': 2, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 5, 'linQ_dim': 4, 'linQ_dim_count': 5, 'linR_count': 5, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C3*D4', 'ngens': 4, 'nilpotency_class': 2, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 8, 'number_characteristic_subgroups': 8, 'number_conjugacy_classes': 15, 'number_divisions': 10, 'number_normal_subgroups': 12, 'number_subgroup_autclasses': 12, 'number_subgroup_classes': 16, 'number_subgroups': 20, 'old_label': None, 'order': 24, 'order_factorization_type': 31, 'order_stats': [[1, 1], [2, 5], [3, 2], [4, 2], [6, 10], [12, 4]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2], 'outer_gen_pows': [0, 2], 'outer_gens': [[1, 10], [7, 2]], 'outer_group': '4.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 4, 'outer_permdeg': 4, 'outer_perms': [1, 6], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 7, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 5], [4, 1]], 'representations': {'PC': {'code': 19095777, 'gens': [1, 2], 'pres': [4, -2, -2, -2, -3, 113, 21, 34]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [16563488, 35813297]}, 'GLFp': {'d': 2, 'p': 7, 'gens': [56, 2064, 1717]}, 'Perm': {'d': 7, 'gens': [1680, 24, 4, 744]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 6], 'solvability_type': 3, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_3\\times D_4', 'transitive_degree': 12, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.14', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 84, 'aut_gen_orders': [2, 12, 12, 12, 12, 6, 6, 12], 'aut_gens': [[1, 2, 4, 16], [673, 2, 676, 16], [9, 2, 228, 16], [1009, 434, 788, 1040], [337, 914, 1244, 1040], [681, 1154, 900, 176], [673, 1154, 900, 208], [1009, 1106, 1020, 1072], [1009, 1202, 1020, 976]], 'aut_group': None, 'aut_hash': 9161810123478319507, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 32256, 'aut_permdeg': 48, 'aut_perms': [11648936930353593519684687135876904220572945936238361919480621, 527908962168242638241083403061569679475798933206561734098715, 9413804797748589598387012826192031614313155571327719660277001, 3790129942773302638284287326521825267478397839173746517210705, 12243352715382366147044471042193821392295469197283616613395830, 11648943908888853122765337599383844506011239809762212731283109, 9460832921465935415837322822113967551219940825918748563076934, 9460822740217609446779996229948037080179808854673713625437658], 'aut_phi_ratio': 84.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 4, 2, 1], [2, 12, 1, 1], [2, 14, 2, 1], [2, 28, 1, 1], [3, 2, 1, 1], [4, 2, 1, 2], [4, 12, 1, 1], [4, 14, 2, 1], [4, 28, 1, 1], [4, 84, 2, 1], [6, 2, 1, 1], [6, 4, 1, 1], [6, 4, 4, 1], [6, 28, 2, 2], [7, 2, 3, 1], [8, 12, 2, 1], [8, 42, 2, 1], [8, 84, 1, 1], [12, 4, 1, 2], [12, 28, 2, 2], [14, 2, 3, 1], [14, 4, 3, 1], [14, 8, 6, 1], [14, 24, 3, 1], [21, 4, 3, 1], [28, 4, 3, 2], [28, 24, 3, 1], [42, 4, 3, 1], [42, 4, 6, 1], [42, 8, 12, 1], [56, 24, 6, 1], [84, 8, 3, 2]], 'aut_supersolvable': True, 'aut_tex': 'C_{42}.(C_2^5\\times C_6).C_2^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '16.14', 'autcent_hash': 14, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 42, 'autcentquo_group': None, 'autcentquo_hash': 5451351369529179689, 'autcentquo_nilpotent': False, 'autcentquo_order': 2016, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2^3\\times S_3\\times F_7', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 4, 2], [2, 12, 1], [2, 14, 2], [2, 28, 1], [3, 2, 1], [4, 2, 2], [4, 12, 1], [4, 14, 2], [4, 28, 1], [4, 84, 2], [6, 2, 1], [6, 4, 5], [6, 28, 4], [7, 2, 3], [8, 12, 2], [8, 42, 2], [8, 84, 1], [12, 4, 2], [12, 28, 4], [14, 2, 3], [14, 4, 3], [14, 8, 6], [14, 24, 3], [21, 4, 3], [28, 4, 6], [28, 24, 3], [42, 4, 9], [42, 8, 12], [56, 24, 6], [84, 8, 6]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '672.1175', 'commutator_count': 1, 'commutator_label': '84.6', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '7.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 9508, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 4, 1, 2], [2, 12, 1, 1], [2, 14, 1, 2], [2, 28, 1, 1], [3, 2, 1, 1], [4, 2, 1, 2], [4, 12, 1, 1], [4, 14, 1, 2], [4, 28, 1, 1], [4, 84, 1, 2], [6, 2, 1, 1], [6, 4, 1, 1], [6, 4, 2, 2], [6, 28, 1, 2], [6, 28, 2, 1], [7, 2, 3, 1], [8, 12, 1, 2], [8, 42, 2, 1], [8, 84, 1, 1], [12, 4, 1, 2], [12, 28, 1, 2], [12, 28, 2, 1], [14, 2, 3, 1], [14, 4, 3, 1], [14, 8, 3, 2], [14, 24, 3, 1], [21, 4, 3, 1], [28, 4, 3, 2], [28, 24, 3, 1], [42, 4, 3, 1], [42, 4, 6, 1], [42, 8, 6, 2], [56, 24, 3, 2], [84, 8, 3, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 29877120, 'exponent': 168, 'exponents_of_order': [6, 1, 1], 'factors_of_aut_order': [2, 3, 7], 'factors_of_order': [2, 3, 7], 'faithful_reps': [[8, -1, 6]], 'familial': False, 'frattini_label': '4.1', 'frattini_quotient': '336.219', 'hash': 9508, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 84, 'inner_gen_orders': [2, 2, 4, 42], 'inner_gens': [[1, 2, 12, 688], [1, 2, 4, 880], [681, 2, 4, 1136], [673, 482, 228, 16]], 'inner_hash': 1175, 'inner_nilpotent': False, 'inner_order': 672, 'inner_split': True, 'inner_tex': 'D_{42}:C_2^3', 'inner_used': [1, 2, 3, 4], 'irrC_degree': 8, 'irrQ_degree': 48, 'irrQ_dim': 96, 'irrR_degree': 16, 'irrep_stats': [[1, 16], [2, 44], [4, 32], [8, 10]], 'label': '1344.9508', 'linC_count': 822, 'linC_degree': 8, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 14, 'linQ_degree_count': 8, 'linQ_dim': 16, 'linQ_dim_count': 64, 'linR_count': 204, 'linR_degree': 12, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C84.C2^4', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 41, 'number_characteristic_subgroups': 66, 'number_conjugacy_classes': 102, 'number_divisions': 52, 'number_normal_subgroups': 136, 'number_subgroup_autclasses': 364, 'number_subgroup_classes': 516, 'number_subgroups': 3828, 'old_label': None, 'order': 1344, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 79], [3, 2], [4, 240], [6, 134], [7, 6], [8, 192], [12, 120], [14, 138], [21, 12], [28, 96], [42, 132], [56, 144], [84, 48]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 2, 2, 6], 'outer_gen_pows': [0, 0, 0, 0], 'outer_gens': [[1, 2, 4, 464], [1, 674, 4, 16], [1, 2, 4, 688], [337, 338, 340, 496]], 'outer_group': '48.52', 'outer_hash': 52, 'outer_nilpotent': True, 'outer_order': 48, 'outer_permdeg': 11, 'outer_perms': [40320, 3628800, 24, 723], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^3\\times C_6', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 26, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 2], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 12], [4, 4], [6, 8], [8, 2], [12, 6], [24, 3], [48, 1]], 'representations': {'PC': {'code': 32639160586683898635377709456563383868530378900830298649459723, 'gens': [1, 2, 3, 5], 'pres': [8, -2, -2, -2, -2, -2, -2, -3, -7, 290, 66, 21763, 2715, 27524, 17612, 11380, 116, 9997, 11157, 141, 23310, 7190, 222, 36879]}, 'Perm': {'d': 26, 'gens': [621574835364353135884942, 358674298805615, 1589467762739, 1349575118545, 4404334373095, 5808412632349, 6758061133824000, 16754357281155028254720000]}}, 'schur_multiplier': [2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{84}.C_2^4', 'transitive_degree': 336, 'wreath_data': None, 'wreath_product': False}