Subgroup ($H$) information
Description: | $C_3$ |
Order: | \(3\) |
Index: | \(448\)\(\medspace = 2^{6} \cdot 7 \) |
Exponent: | \(3\) |
Generators: |
$d^{28}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.
Ambient group ($G$) information
Description: | $D_{84}.D_4$ |
Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_4^2:D_{14}$ |
Order: | \(448\)\(\medspace = 2^{6} \cdot 7 \) |
Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Automorphism Group: | $C_{14}.(C_2^5\times C_6).C_2$ |
Outer Automorphisms: | $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{42}.(C_2^5\times C_6).C_2^2$ |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_{84}.D_4$ | ||||||
Normalizer: | $D_{84}.D_4$ | ||||||
Complements: | $C_4^2:D_{14}$ | ||||||
Minimal over-subgroups: | $C_{21}$ | $C_6$ | $C_6$ | $C_6$ | $S_3$ | $S_3$ | $S_3$ |
Maximal under-subgroups: | $C_1$ |
Other information
Möbius function | $0$ |
Projective image | $D_{84}.D_4$ |