Properties

Label 1344.4135.64.a1.a1
Order $ 3 \cdot 7 $
Index $ 2^{6} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{21}$
Order: \(21\)\(\medspace = 3 \cdot 7 \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(21\)\(\medspace = 3 \cdot 7 \)
Generators: $d^{28}, d^{12}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $D_{84}.D_4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_4^2:C_2^2$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $D_4^2:C_2^2$, of order \(256\)\(\medspace = 2^{8} \)
Outer Automorphisms: $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^2$
$\operatorname{Aut}(H)$ $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$D_4:C_{42}$
Normalizer:$D_{84}.D_4$
Complements:$C_4^2:C_2^2$
Minimal over-subgroups:$C_{42}$$C_{42}$$C_{42}$$D_{21}$$D_{21}$$D_{21}$
Maximal under-subgroups:$C_7$$C_3$

Other information

Möbius function$0$
Projective image$D_{84}.D_4$