Properties

Label 1344.4135.3.a1.a1
Order $ 2^{6} \cdot 7 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:D_{14}$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Index: \(3\)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $a, d^{42}, c, c^{2}d^{21}, b, d^{12}, d^{21}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{84}.D_4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^2$
$\operatorname{Aut}(H)$ $C_{14}.(C_2^5\times C_6).C_2$
$\card{\operatorname{res}(S)}$\(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^2:D_{28}$, of order \(224\)\(\medspace = 2^{5} \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_4^2:D_{14}$
Normal closure:$D_{84}.D_4$
Core:$C_{28}.D_4$
Minimal over-subgroups:$D_{84}.D_4$
Maximal under-subgroups:$C_{28}.D_4$$D_4:D_{14}$$D_4:C_{28}$$C_4^2:D_7$$C_4.D_{28}$$D_{28}:C_4$$C_4.D_{28}$$C_4^2:C_2^2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$D_{42}:D_4$