Subgroup ($H$) information
Description: | $C_2\times C_{84}$ |
Order: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Generators: |
$b^{2}, d^{4}, c^{2}, c^{7}, d^{6}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the commutator subgroup (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $(C_2\times C_{12}).D_{28}$ |
Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2^3$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(2\) |
Automorphism Group: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Outer Automorphisms: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_{42}\times D_4).C_6.C_2^5$ |
$\operatorname{Aut}(H)$ | $C_{12}:C_2^3$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_{12}:C_2^3$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
$W$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
Möbius function | $-8$ |
Projective image | $(C_2\times C_6):D_{28}$ |