Properties

Label 1344.2722.12.d1.a1
Order $ 2^{4} \cdot 7 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times C_{28}$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $b^{42}, b^{8}, b^{28}, c, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $(C_2\times C_{24}).D_{14}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^3$
$\operatorname{Aut}(H)$ $C_6\times \GL(2,\mathbb{Z}/4)$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2^3\times C_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(448\)\(\medspace = 2^{6} \cdot 7 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_4\times C_{28}$
Normalizer:$C_{28}:Q_{16}$
Normal closure:$C_{12}:C_{28}$
Core:$C_2\times C_{28}$
Minimal over-subgroups:$C_{12}:C_{28}$$C_{28}:Q_8$$C_{28}:Q_8$$C_4:C_{56}$
Maximal under-subgroups:$C_2\times C_{28}$$C_2\times C_{28}$$C_2\times C_{28}$$C_4^2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-2$
Projective image$S_3\times D_{28}$