Properties

Label 1344.2722.6.b1.a1
Order $ 2^{5} \cdot 7 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{28}:Q_8$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a, b^{8}, c, b^{28}, b^{42}, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{24}).D_{14}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^3$
$\operatorname{Aut}(H)$ $F_7\times C_2^4.C_2^3$, of order \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$D_4\times C_2^3\times F_7$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_{28}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_{28}:Q_{16}$
Normal closure:$C_{21}:(C_4\times Q_8)$
Core:$C_{14}:Q_8$
Minimal over-subgroups:$C_{21}:(C_4\times Q_8)$$C_{28}:Q_{16}$
Maximal under-subgroups:$C_{14}:Q_8$$C_4\times C_{28}$$C_{28}:C_4$$C_{28}:C_4$$C_{14}.D_4$$C_4\times Q_8$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$S_3\times D_{28}$