Subgroup ($H$) information
Description: | $C_{28}:Q_8$ |
Order: | \(224\)\(\medspace = 2^{5} \cdot 7 \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Generators: |
$a, b^{8}, c, b^{28}, b^{42}, c^{2}$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $(C_2\times C_{24}).D_{14}$ |
Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{42}.(C_2^5\times C_6).C_2^3$ |
$\operatorname{Aut}(H)$ | $F_7\times C_2^4.C_2^3$, of order \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \) |
$\operatorname{res}(S)$ | $D_4\times C_2^3\times F_7$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $D_{28}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $3$ |
Möbius function | $1$ |
Projective image | $S_3\times D_{28}$ |