Properties

Label 1344.2218.3.a1.a1
Order $ 2^{6} \cdot 7 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{28}.D_8$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Index: \(3\)
Exponent: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Generators: $a, c^{84}, c^{21}, b^{2}c^{126}, b, c^{24}, c^{126}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{168}.D_4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{84}).C_6.C_2^6$
$\operatorname{Aut}(H)$ $C_{28}.(C_2^3\times C_6).C_2^3$
$\card{\operatorname{res}(S)}$\(10752\)\(\medspace = 2^{9} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_{14}:D_8$, of order \(224\)\(\medspace = 2^{5} \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{28}.D_8$
Normal closure:$C_{168}.D_4$
Core:$C_{14}:Q_{16}$
Minimal over-subgroups:$C_{168}.D_4$
Maximal under-subgroups:$C_{14}:Q_{16}$$D_8:C_{14}$$C_7:\OD_{32}$$C_7:\SD_{32}$$C_7:\SD_{32}$$C_7:Q_{32}$$C_7:Q_{32}$$Q_{32}:C_2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_{42}:D_8$