Subgroup ($H$) information
| Description: | $C_{28}.D_8$ |
| Order: | \(448\)\(\medspace = 2^{6} \cdot 7 \) |
| Index: | \(3\) |
| Exponent: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
| Generators: |
$a, c^{84}, c^{21}, b^{2}c^{126}, b, c^{24}, c^{126}$
|
| Derived length: | $2$ |
The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $C_{168}.D_4$ |
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
| Exponent: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2\times C_{84}).C_6.C_2^6$ |
| $\operatorname{Aut}(H)$ | $C_{28}.(C_2^3\times C_6).C_2^3$ |
| $\card{\operatorname{res}(S)}$ | \(10752\)\(\medspace = 2^{9} \cdot 3 \cdot 7 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $C_{14}:D_8$, of order \(224\)\(\medspace = 2^{5} \cdot 7 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | $-1$ |
| Projective image | $C_{42}:D_8$ |