Subgroup ($H$) information
| Description: | $C_{14}:Q_{16}$ |
| Order: | \(224\)\(\medspace = 2^{5} \cdot 7 \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
| Generators: |
$ab, c^{24}, c^{21}, c^{126}, b^{2}c^{126}, c^{84}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $C_{168}.D_4$ |
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
| Exponent: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $S_3$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2\times C_{84}).C_6.C_2^6$ |
| $\operatorname{Aut}(H)$ | $C_{28}.(C_6\times D_4^2)$, of order \(10752\)\(\medspace = 2^{9} \cdot 3 \cdot 7 \) |
| $\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $W$ | $C_7:D_8$, of order \(112\)\(\medspace = 2^{4} \cdot 7 \) |
Related subgroups
Other information
| Möbius function | $3$ |
| Projective image | $C_{42}:D_8$ |