Properties

Label 13310.bi.110.a1.f1
Order $ 11^{2} $
Index $ 2 \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2$
Order: \(121\)\(\medspace = 11^{2} \)
Index: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(11\)
Generators: $bc^{3}d^{2}, d$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{11}^2:F_{11}$
Order: \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $F_{11}$
Order: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Automorphism Group: $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}.C_{10}.\PSL(2,11).C_2$, of order \(17569200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{4} \)
$\operatorname{Aut}(H)$ $\GL(2,11)$, of order \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \)
$W$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{11}^2$
Normalizer:$C_{11}^2:F_{11}$
Complements:$F_{11}$ $F_{11}$ $F_{11}$ $F_{11}$ $F_{11}$ $F_{11}$ $F_{11}$ $F_{11}$ $F_{11}$ $F_{11}$ $F_{11}$
Minimal over-subgroups:$\He_{11}$$C_{11}^2:C_5$$C_{11}\times D_{11}$
Maximal under-subgroups:$C_{11}$$C_{11}$
Autjugate subgroups:13310.bi.110.a1.a113310.bi.110.a1.b113310.bi.110.a1.c113310.bi.110.a1.d113310.bi.110.a1.e113310.bi.110.a1.g113310.bi.110.a1.h113310.bi.110.a1.i113310.bi.110.a1.j113310.bi.110.a1.k113310.bi.110.a1.l1

Other information

Möbius function$-11$
Projective image$C_{11}^2:F_{11}$