Properties

Label 13310.bi.1.a1.a1
Order $ 2 \cdot 5 \cdot 11^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:F_{11}$
Order: \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)
Index: $1$
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $a^{5}, b, cd^{8}, a^{2}, d$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and supersolvable (hence monomial).

Ambient group ($G$) information

Description: $C_{11}^2:F_{11}$
Order: \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}.C_{10}.\PSL(2,11).C_2$, of order \(17569200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{4} \)
$\operatorname{Aut}(H)$ $\He_{11}.C_{10}.\PSL(2,11).C_2$, of order \(17569200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{4} \)
$W$$C_{11}^2:F_{11}$, of order \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{11}^2:F_{11}$
Complements:$C_1$
Maximal under-subgroups:$\He_{11}:C_5$$C_{11}^2:D_{11}$$C_{11}:F_{11}$$C_{11}:F_{11}$$C_{11}:F_{11}$$C_{11}:F_{11}$$C_{11}:F_{11}$$C_{11}:F_{11}$$C_{11}:F_{11}$$C_{11}:F_{11}$$C_{11}:F_{11}$$C_{11}:F_{11}$$C_{11}:F_{11}$$C_{11}:F_{11}$

Other information

Möbius function$1$
Projective image$C_{11}^2:F_{11}$